
I”ATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22, 899-9 13 (1 996)

AN ADAPTIVE UNSTRUCTURED TRI-TREE ITERATIVE
SOLVER FOR MIXED FINITE ELEMENT FORMULATION

OF THE STOKES EQUATIONS

S. 0. WILLE
F d W of Engineering, Oslo College, Nonwy, Cort Adelersgafi? 30, N-0254 Oslo. Nonwy

SUMMARY

An iterative adaptive equation solver for solving the implicit Stokes equations simultaneously with hi-tree grid
generation is developed. The tri-tree grid generator builds a hierarchical grid structure which is mapped to a finite
element grid at each hierarchical level. For each hierarchical fiNte element grid the Stokes equations are solved.
The approximate solution at each level is projected onto the next finer grid and used as a start vector for the
iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a
tolerated solution is reached.

In order to reduce the o v d l work, the element matrices are integrated analytically beforehand. The efficiency
and behaviour of the present adaptive method are compared with those of the previously developed iterative
equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.

The efficiency of the incomplete coupled node fill-in preconditioner is shown to be largely dependent on the
global node numbering. The preconditioner is therefore tested for the natural node ordering of the tri-tree grid
generator and for different ways of sorting the nodes.

KEY WORDS: grid generation; bi-tree; u n s b u c W grid; finite elements; mixed formulation; analybc integration; adapbve solvex;
Stokes equations

INTRODUCTION

Intensive research on developing efficient algorithms for solving the Navier- Stokes equations for
arbitrary geometries has taken place in several physical disciplines such as aerodynamics,’
hydrodynamics2 and haem~dynamics.~ For implicit solution algorithms,- direct equation solvers
have shown limitations due to rather large computer storage and computer time requirements.’ In view
of this, iterative equation solvers have been paid extensive attention, with the ultimate goal to be able to
solve the Navier-Stokes equations for large, timedependent, three-dimensional problems with complex
geometry. Although there have been substantial developments towards efficient solvers, there are still
needs and possibilities for further improvements.

Recently, several iterative equation solvers for non-symmetric equation systems have been
developed and tested.”12 These iterative equation solvers have gained quite a lot in both efficiency
and robustness by the use of different preconditioning algorithms of the equation ~ys t em. ’~” In
previous papers’** a new incomplete LU factorization preconditioner with a coupled node fill-in
algorithm was presented. The philosophy of this ILU preconditioner made it possible to obtain also a
preconditioning matrix for the pressure coefficients in the equation matrix. Fill-ins with this algorithm
were allowed where the nodes in the equation system were coupled and not only where the

CCC 0271-2091/96/090899-15
0 1996 by John Wiley & Sons, Ltd.

Received October 1994
Revised August I995

900 S. 0. WlLLE

coefficients were initially different fiom zero. This ILU preconditioner revealed advantageous
properties also when the equation system was reduced to form an inner-outer iterative algorithm.'

In the present work the global order of node numbering was found to play an important role in the
convergence rate. Several node-ordering sequences have therefore been tested. An advantageous node-
ordering scheme seems to be to number the nodes in such a way that during the incompleted
elimination there will be no more contribution to the element matrix from already eliminated nodes.
The most efficient node ordering for incomplete coupled node fill-in preconditioning seems to be to
number the nodes from the periphery of the finite element grid towards the centre of the grid in an
increasing number sequence.

The most time-consuming operation in iterative equation solvers of the conjugate gradient type is
matrix-vector multiplication. Since the finite element equations are solved approximately for
successively finer grids during the refinement procedure, the matrix generation of the equation
system should be as fast as possible. Traditionally, numerical integration is applied to form the
equation matrix. However, since simple elements such as triangles in two dimensions and tetrahedra in
three dimensions are applied, the integration of the element matrix terms can be executed analytically.
Analytical integration will then save a lot of computational work during the finite element calcu-
lations. The integration formulae consist of a constant part, independent of element size, multiplied by
a term containing the relative location of the nodes within each element.

During the transition from coarse to finer grid the solution of the coarse grid is interpolated to the
fine grid and used as a start vector at the fine grid. The refinement procedure on the grid consists of
dividing each element into four new elements in two dimensions and eight new elements in three
dimensions. Then some nodes will be common to both the coarse and the fine grid. For these nodes,
solution values of the coarse grid are used directly. New nodes in the fine grid are generated at the
midpoints between the nodes in the coarse grid. The start values for the iterations at these points in the
fine grid are then found by linear interpolation. The main purpose of the present adaptive algorithm is
to obtain better start vectors as the grids become more and more refined. When the finest grid is
reached, the solution is iterated until the desired convergence criterion is satisfied.

In a previous paper a new tri-tree method16 for generating unstructured grid^,"^'^ the tri-tree
algorithm for generating grids in two and three dimensions, was presented. The tri-tree algorithm
method starts with a triangle or tetrahedron which is subdivided into four new triangles or eight new
tetrahedra respectively. The hi-tree structure then has pointers like the quad-tree and o ~ t - t r e e . ' ~ ~ ~ The
main and essential difference is that the leaves in the tri-tree consist of triangles and tetrahedra. The
triangulation procedure of the tri-tree element structure is then much simplified compared with that of
the oct-tree structure and will only consist of connecting triangles or tetrahedra of different sizes. By
introducing very mild restrictions on the tri-tree structure, which hardly affect the ability of local
refinements, the triangulation procedure becomes very simple. The elements generated are optimal in
the sense that they do not collapse during the refinements. The elements are equilateral triangles and
tetrahedra, or at the interfaces of elements of different sizes the equilateral triangles will be divided
into two and the equilateral tetrahedra will be divided into two or four.

During the triangulation procedure an efficient search algorithm is needed for finding co-ordinate
points in space. In the present work a lexical tree search algorithm for the point co-ordinates has
proved to be very efficient.

The initial triangle is successively subdivided into four new triangles and the tetrahedron into eight
new tetrahedra. The successive subdivision is continued until the required level of refinement is
reached. At each level of tri-tree refinement an associated finite element grid can be constructed and
used for finite element calculations. The tri-tree data structure is therefore well suited for an adaptive
algorithm.

TRI-TREE ITERATIVE SOLVER FOR STOKES EQUAnONS 90 1

The approximate solution procedure for the Navier-Stokes equations is more complicated than for
other positive definite systems owing to the zero diagonal block in the equation matrix. In previous

the coupled node fill-in LU factorization was designed and applied as preconditioning for the
Stokes and Navier-Stokes equations. In the same papers the Bi-CGSTAB conjugate gradient algorithm
proved to work well also for equation systems which were not positive definite. In the Bi-CGSTAB
smoothing algorithm the element matrices are only needed in matrix-vector multiplication. The matxix-
vector product can be done node by node for each element and the equation matrix need not be
assembled and stored. The matrix coefficients are generated whenever needed.

EQUATIONS

The Stokes equations are linear and are given by

- v . v = o in n, (2)

where v is the velocity vector,p is the pressure and p is the viscosity coefficient. The first equation is the
equation of motion which contains a diffusion and a pressure gradient term. The second equation is the
equation of continuity. A minus sign is ineoduced in the continuity equation in order to obtain the same
sign for the pressure gradient as for the continuity equation in the finite element formulation. In the
finite element formulation, two different orders of basis functions are applied for approximating
velocities and pressure. With the first-order basis functions the velocities are approximated by linear
polynomials and the pressure is considered constant on each element. With the second-order basis
functions the velocites are approximated with quadratic basis functions and the pressure is approxi-
mated with linear basis functions on each element?' The Babuska-Brezzi condition is satisfied for both
these finite element formulations. Denote the quadratic polynomials by Ni, the linear polynomials by Li
and the constant polynomial on each element by & Then by the Galerkin residual method and
integration by parts the first-order finite element formulation of the Stokes equation system becomes

av
V L p df2 - jm pL.i an ddR + L g dsR = 0,

F = - J K , V . v d R = O .
n P

The second-order finite element formulation of the Stokes equation system becomes

The following equation system can then be solved for the first-order formulation:

(3)

902 S. 0. WILLE

For the second-order formulation the equation system becomes

ANALYTIC INTEGRATION

Let the linear basis functions be denoted by Li and the quadratic basis functions by Ni. Then in three
dimensions

Li = ui + bix + C$ + diz.

The quadratic basis function can then be given as a function of the linear basis function. For the comer
nodes i and midside nodes n respectively

Ni = Li(2Li - l), N,, = 4LjLk,

where the nodes j and k are the comer nodes on each side of the midside node n. The local numbering of
the nodes is shown in Figure 2 (see next section). The comer nodes are numbered first, then the midside
nodes.

Let nd be the spatial dimension. The exact integrals can be computed by the formula

The integrals appearing in the matrices then become

In the formulae below the &function is defined by

1, i = j , 4 0, i # j .

Let the comer nodes have the local node numbers 1, . . . , nc and let the midside nodes be locally
numbered as n, + 1, . . . , n,. In the first-order basis function formulation the integrals of the derivatives
in the equation matrix are given by

6 . . =

(7)

TRI-TREE ITERATIVE SOLVER FOR STOKES EQUATIONS 903

In the second-order basis function formulation the integrals of the derivatives in the equation matrix are
given by

i<n,, j < n c ,

Usually, numerical integration, e.g. Gauss integration, is applied to compute the coefficients in the
finite element matrices. When simple elements such as triangles and tetrahedra are used, it is possible to
perform analytical integration. The coefficients of diffusion, continuity and pressure gradient can be
computed exactly. For second-order polynomial approximation, all these texms are integrals of second-
order polynomials.

TRI-TREE STRUCTURE

In the tri-tree search equilateral triangles and tetrahedra are used as basic domains. The
equilateral triangles and tetrahedra are then subdivided into new equilateral triangles and tetrahedra. In
two dimensions an equilateral triangle is divided into four triangles. A diagram of the two-dimensional
tri-tree structure is shown in Figure 1. An initial equilateral triangle is divided into four new equilateral
triangles. Each of these triangles can then be divided into another four equilateral triangles, and so on.
The tree structure of these divisions is shown in the lower part of Figure 1 . The record belonging to each
triangle contains pointers to the triangles into which it is subdivided. This triangulation procedure
therefore permits local refinements required by the geometric shape of the boundary as well as the
properties of the solution.

In three dimensions an equilateral tetrahedron is divided into eight tetrahedra. The ordering of
successive divisions is organized as a tree structure. The tree record structure needs nine integers in two
dimensions and 1 4 integers in three dimensions in order to keep the necessary information at each level
of subdivision.

The records describing each two-dimensional triangular leaf are shown in Figure 2. A level number
indicates the size of division and all triangles or tetrahedra of equal size wil l have the same level number.

904 S. 0. WILLE

Tri -The

Figwe 1. Hierarchical stnrcaue of the tri-lree. An initial equilateral triangle is divided into four new equilateral triangles. Each of
these triangles can thm be divided into another four equilateral triangles. and 80 OIL The slructm of these divisions is shown
in the lower part of the figure. The record belonging to each triangle contains pointers to the triangles into which it is subdivided.
This triangulation procedure therefore permits local refinements requid by the geometric shape of the boundary as well as the

propexties of the solution

When a division is t e d a l , the level number is given a negative sign. In addition to the level number, a
point index to each of the comers of the structure is stored. This is not strictly necessary, because the co-
ordinates of each point can be calculated when they are needed. However, if the comer points are stored,
the computing time is considerably reduced. The next positions in the structured record are pointers to
the records of the divisions. When a triangle or tetrahedron is terminal, some of these pointers are used
as pointers to the neighbouring triangles and tetrahedra instead. The last integer in the record points to
the record of the parent triangle or tetrahedron. It is therefore possible to perform both up and down
searches in the tri-tree.

When a triangle or tetrahedron is divided, the midpoint on each line between the comers is calculated.
This point may already exist if the neighbour has a larger level number. If a point does not exist, it is
added to the list of points. In order to be able to search for and add points fast, the list is organized as a
binary tree. The binary tree, Figure 3, is sorted lexically on the point co-ordinates.

In order to find the neighbow of a tri-tree element, a search in the tri-tree is performed to find which
hi-tree element contains a point slightly outside the edge or side of the present triangle or tetmhedron.
The point to use in the tri-tree search is given by

TRI-TREE ITERATIVE SOLVER FOR STOKES EQUATIONS

4 - 2 P S p 6 C) O O J I

905

5 -2 p6 H l p S l l I 4 J I I

In this expression, Pg is the centre of gravity and P, is a comer in the tri-tree element. The spatial
dimension is d (d= 2 or 3) and E is a small constant which depends on the accuracy of the actual
computer. If E is zero, P is the point where the line from the comer P, through the point of gravity hits
the opposite edge or side. For small E the point P will be on the line from comer through the point of
gravity slightly outside the hi-tree element. The constaut E should be chosen so that the computer
representation of

pg + (Pg - P,)/d # pg + (Pg - PJ/d + E(Pg - P,) (12)

in only two or three of the least s i w c a n t digits. The point P defined in this way is a point slightly
outside the element edge or side opposite to the comer P,. A search in the tri-tree for a tri-tree element
which encloses a point can either start at the mot of the tree or at the location of the last search. If the
points which are searched for are introduced in a random fashion, it will be most efficient to start at the
root of the tree. When a search for the point P defined above is perfomed, the apriori knowledge is that
the point is enclosed in an adjacent hi-tree element. The probability is therefore high that the adjacent
tri-tree element belongs to the same subtree. If the hi-tree element belongs to the same subtree, it is
faster to start the search at the present location, or even better at one level above the present location,

906 S. 0. WILLE

Binary tree, lexically sorted

Given two points, P and Q

P = [z, Y, Z] and Q = [u, v , w]
then P 5 Q if

where

i f x < u
i f x = u y < v
i f x = u y = v Z < W

Figure 3. During the refinement process the nodes with co-ordinates are stored in a binary tree. The key to each node is the co-
ordinates, which detmnine whether one node is smaller or larger than another. The nodes me then lexically sorted and a fast
search algorithm will decide whether a point generated during the refinement p d m is already pment in the tree structure

than from the root of the tree. On the average, experiments indicate that it is most efficient to start the
search at one level above the present. At each level the four triangles in two dimensions and the eight
tetrahedra in three dimensions are explored to find which one contains the point.

In the balancing procedure a tree element is refined if more than one neighbour is at a smaller level.
The balancing procedure is an intemtive procedure. After the balancing procedure the tri-tree is valid for
triangulation. In two dimensions there is at most one node at the midpoint of one of the edges of the
triangles. This tri-tree triangle is divided into two finite element triangles. In three dimensions the
situation is more complex. Each equilateral tri-tree tetrahedron can either have one node on one of the
edges or three nodes at the edges of one of the sides. If there is one node at one edge, the tetrahedron is
divided into two. If there are three nodes at the edges of one side, the tetrahedron is divided into four
finite element tetrahedra. The triangulation procedure is only applied to tri-bee elements which are
inside the computational domain. When the tri-tree is triangulated, the finite elements are kept in a finite
element structure and the tri-tree structure is stored to be used later when the grid is further adapted to
the solution.

ADAPTIVE SOLVER

Let d denote the set of grids {Gk: R = 1. . . . , N), where the grids d are in increasingly finer order. Let
xk E Xk be the set of functions which we require to solve the set of differential equations on the grid d.
Let the transfer operator fiom coarse to fine grid be pk: xk-l --+ xk, where pk is the prolongation from

TRI-TREE ITERATlVE SOLVER FOR STOKES EQUATIONS 907

coarse to fine. Let the set of differential equations to be solved on d be given by

p(f) = bk.

Let Smooth(s, 3) be a smoothing or approximate solution algorithm defined on every grid G', 3 the start
vector and x the smoothed vector. The adaptive algorithm is then defined by

Choose ik
for {k = 1; k (= N - 1; k + +)

Solve FN(fl) = IP iteratively.

The initial triangle or tetrahedron is successively refined until the desired refinement level is reached. At
each tri-tree level of refinement a finite element grid is constructed and the set of differential equations is
solved approximately for this grid. The approximate solution on one finite element grid level is then
interpolated and projected onto the finer grid and used as a start vector for this grid.

The prolongation 3 is the mapping from coarse to fine grid. The values of the common nodes are
taken from the coarse grid and the values of the new nodes at the midpoints of each side are interpolated
linearly. The linear interpolation procedure is simply to take the average between two comer nodes. The
prolongation algorithm is applied in both two and three dimensions. There exist more complicated local
smoothing algorithms which take into account several neighbouring nodes. However, as local
smoothing is followed by global smoothing, a simple first-order local smoothing algorithm is sufficient.

The critical part of the adaptive algorithm is the global smoothing method. The special problem
which arises with the Navier-Stokes equations is the z m diagonal block5ps associated with the
continuity equation, which implies non-positive definiteness of the equation matrix. Thus smoothing
algorithms such as Gauss-Seidel and traditional ILU factorization cannot be applied directly as
smoothing procedure. However, if some rather arbitmy postconditioning' matrix is used, this
limitation can be overcome. The difficulty with non-positive definiteness can also be avoided with
inner- outer iterations. As the equation matrix is non-symme~c, the usual conjugate w e n t type of
smoothing cannot be applied either. The introduction of inner-outer iterations and a postconditioning
matrix certainly represents an increase in superfluous work. In the present work the CGSTAB conjugate
w e n t method"*'* with coupled node fill-in, which is often considered as an iterative equation solver,
is used as smoother.

The adaptive multigrid algorithm starts with the coarsest grid, computing a smoothed or exact
solution for this grid. This solution and the corresponding residual are then prolonged to the finer grid.
At the finest grid level the solution is determined fully converged. When the equation system is solved
for the finest grid, the adaptive cycle is complete.

The smoothing algorithm within each adaptive iteration can be just a few iterations with the CGSTAB
smoother or a fully converged solution found by the CGSTAB equation solver. At each gnd level the
smoothing procedure can be stopped either after a fixed small number of iterations or by a convergence
criterion defined by

908 S. 0. WILLE

where 8 is the residual and xk is the solution vector at grid level k. The complete adaptive iteration is
stopped by the same convergence criterion with E = lop4.

NODE-ORDERING SCHEME

The node numbering for the tri-tree grid generator is shown in Figure 4a. The nodes in the tri-tree
generator are numbered as new nodes are introduced during refinement of the grid. The comen are
numbered first, and when the final refinement level is reached, the midside nodes are introduced in
element order. The other way of node ordering which has been investigated is based on sorting nodes. In
the sorting algorithm the nodes are sorted with respect to their distance from the centre of the grid. The
node which is furthest away from the centre is given the smallest number. In the first ordering scheme,
where all nodes are sorted, Figure 4b, the nodes are sorted regardless of whether they are corner or
midside nodes. In the second ordering scheme, Figure 4c, the comer and midside nodes are sorted
separately and the comer nodes are numbered before the midside nodes. In Figure 4d the comer and
midside nodes are again sorted separately but the midside nodes are numbered before the comer nodes.

NUMERICAL EXPERIMENTS

The test problem is channel flow with the boundary conditions shown in Figure 5. The velocities are set
to zero at the walls and a parabolic velocity profile is imposed at the inlet. The Reynolds number for the

,Ai-n.?.e All Sort

a

C 1 M Sort :,K
6

12

1 10 5 11

C

15 1 4

a

1 5 1 3 6 2

b

M j C S o r t

1 9 1 24 8 20

22 s m : ,

3 I

17 1 21 2 18

d

Figure 4. Differmt methods for global numbering of nodes: a, the numbering of nodes achieved by tri-tree grid generator, b, all
the nodes are sorted with respect to distance from ceatrc of grid; c, comer and midside nodes are sorted separately and comer

nodes nmbcred first; d, comer and midside nodes are sorted separately aad midside nodes numbered first

TRI-TREE ITERATlVE SOLVER FOR STOKES EQUATIONS 909

channel flow is 1000. The successive grids used at each refinement level are shown in Figure 6.
Experiments are performed for both first- and second-order basis functions approximating the solution.
With first-order basis functions the velocities are approximated by linear polynomials and the pressure is
approximated by a constant on each element. With second-order basis functions the velocities are
approximated by quadratic polynomials and the pressure is approximated by linear polynomials on each
element. The pressure and velocities are shown in Figure 7 for the second-order polynomial
approximation at grid level 3 and Reynolds number 10o0. At each level of refinement the finite
element equatin system is solved iteratively by Bi-CGSTAB preconditioned by incomplete factorization
with coupled node fill-in. The original algorithm is obtained by using the zero vector as start vector for
the iterative solution procedure. The projection algorithm uses the projected solution from the coarser
grid as start vector. The projection algorithm will therefore have a start vector which is much closer to
the solution vector than that of the original algorithm. The convergence criterion at all grid level is set to

The numerical experiments are performed for first-order and second-order basis hctions. The effect
of sorting the nodes for the first-order basis functions is shown in Table I. The results in this table
indicate that the number of iterations necessary to reach convergence is considerably reduced when the
nodes are sorted compared with the case when the nodes appear in tri-tree order. For the most refined
grids, levels 4 and 5 , the iterations became stagnant and the iterative equation solved had to be restarted.

Table I1 shows the effect of sorting the nodes for the second-order basis functions. Three ways of
sorting the nodes are investigated. The first method consists of sorting all the nodes regardless of
whether they are comer or midside nodes. Compared with tri-tree node ordering, all sortiug methods
needed fewer iterations for convergence. The number of iterations to convergence for the three sorting
methods did not differ significantly. For the most refined grid, level 5 , it was also necessary to restart the
iterations for the second-order basis functions.

The results of using the projection of the solution from the coarser grid as start vector for the first-
order basis functions are shown in Table 111. All the nodes are sorted in these experiments. The velocity
solution from the coarser grid is interpolated linearly. However, as the pressure is constant on each
element, is was difficult to compute a good projection for the pressure which both increased the
convergence rate and converged accurately enough to the right solution. In fact, the best starting value
for the pressure was the zero vector. The behaviour of the equation solver is very much improved by the
projection algorithm, especially for the finest grids. For the most refined grids it was not possible to
obtain a converged solution at all without using the projected solution of the velocities as start vector.

= 10-4.

Y = 0, v = 0

u = uo(l I& - I))." = 0

Lh u = o . u = o

= 0,- -0,

Figure 5. Test problem of channel flow with boundary conditions. The velocities are ZQD at the walls. At the inlet a parabolic
velocity profile is introduced

910 S. 0. WILLE

Figure 6. Hierarchy of @ds used in computations. The initial grid is shown at the top and has eight finite elements with a total of
nine corner nodes. At the next level of refinement each of these elements is divided into four new elements. giving a total of 32
elements and 25 comer nodes. The start vector for each f ins grid is the solution fiom the coarser grid for common nodes. The

start values for new nodes are found by linear interpolation

The simulation results for the projection algorithm are shown in Table IV For the original solution
algorithm where the zero vector is used as start vector, all nodes are sorted. For the projection algorithm
the three different sorting methods are applied. Again the three sorting methods reveal no sigmficant
differences with respect to convergence rate. The projection algorithm is considerably faster for medium
grid size and converges with as little as one linear iteration for the finest grids. The reason for
convergence within one iteration is of course due to the fact that the start vector is within the tolerance of
the final solution. However, in contrast, the original method does not converge at all. The total amount
of work in obtaining the solution by the projection method must for completeness include the work in

_ _ _ _ _ _ _ _ _ _ _ - - - - - -

I
Figure 7. Pressure and velocities of channel flow for Reynolds number lo00 at grid level 3. The pressure is displaybd as isobars

and the velocities are shown as velocity vectors

TRI-TREE ITERATTVE SOLVER FOR STOKES EQUATIONS 91 1

Table I. Number of iterations for different grids for first-order basis functions. The first column shows the level of
refinement of the grid. The second column shows the number of finite elements in each co-ordinate direction. The
third column shows the number of d e p s of freedom for each refinement level. The last two columns show the
number of iterations to convergence for the tri-tree node ordering and for all nodes sorted, respectively

Level Grid Deg. k. Tri-hee All sort

4 x 4
8 x 8

16 x 16
32 x 32

82
290

1090
4226

13
37

113
33470

Table II. Number of iterations for different grids for second-order basis functions. The first column shows the level
of refinement of the grid. The second column shows the number of finite elements in each coordinate direction.
The third column shows the number of degrees of M o m for each refinement level. The last columns show the
number of iterations to convergence for the tri-tree node ordering, for all nodes, for the comer and midside nodes
sorted separately with the comer nodes numbered first and for the comer and midside nodes sorted separately with
the midside nodes numbered first, respectively

Level Grid Deg. free. Tri-tRe All sort C/M sort M/C sort
~

1 2 x 2- 57 6 3 5 6
2 4 x 4 187 6 5 5 6
3 8 x 8 659 19 12 14 11
4 16 x 16 2467 89 40 36 37
5 32 x 32 9539 41750 20650 22950 20550

Table III. Number of iterations and computational work for different grids with and without using the projection of
the solution from coarser grid as start vector in the iterations. In both cases the iterative equation solver uses
incomplete factorization with coupled node fill-in. In these experiments a set of first-order basis fimctions is used,
with linear approximation for the velocities and constant approximation for the pressure on each element. The first
column shows the level of grid refinement. The second column shows the number of degrees of freedom. The
number of original iterations is found when the zero vector is used as start vector. The number of projected
iterations is obtained by using the projection of the solution h m the coarser grid as start vector. The last two
columns show work in terms of number of multiplications x The initial work is performed during the
incomplete coupled node fill-in factorization. The iterative work is performed during one linear iteration. The
subscript n u m h in the third and fourth columns indicate the number of iterations between restarts of the iterative
equation solver

work

Deg. original Projection initial iterative
Level free. all sort all sort

2 82 10 10 5 8
3 290 21 20 18 30
4 1090 5930 31 72 117

6 16,642 - 41850 1142 1819
5 4226 24370 13050 286 460

912 S. 0. WILLE

Table IV Same parameter values as in Table III for second-order basis functions used in the element formulation.
The velocities are approximated by quadratic basis functions and the pressure is approximated by linear basis
functions on each element. The third column shows the number of iterations needed when all nodes are sorted
using zero start vector. In the next three columns the projected solution from the coarser grid is used as start vector.
Three different sorting methods for the projection algorithm are applied, namely all nodes sorted, the corner and
midside nodes sorted separately with the comer nodes numbered first and the comer and midside nodes sorted
separately with the midside nodes numbered first. Note that the number of iterations to obtain the solution
increases until level 4 when using the projection solution as start vector. Then the number of iteration starts to
decrease. This phenomenon is explained in the text. The difference sorting methods do not result in a significant
difference in number of iterations to convergence. The two last columns show work in terms of number of
multiplications x The initial work is performing the incomplete coupled node fill-in decomposition. The
iterative work is the number of multiplications x performed during one linear iteration. The subscript
number in the third column indicates the number of iterations between restarts of the itemtive equation solver

Projection work

Deg. Original
Level free. all sort All sort C/M sort M/C sort Initial Iterative

1 59 3 3 3 3 15 10
2 187 5 4 4 4 58 37
3 650 12 9 8 7 225 139
4 2467 40 15 15 17 893 540
5 9539 20650 9 4 5 3553 2130
6 37,507 - 1 1 1 14,180 8459
7 148,739 - 1 1 1 58,400 33,480

obtaining the solution for all coarser grids. Even then, the amount of work to be performed is favourable,
as the sum of work executed for the coarser grids is of the same order of magnitude as for the finest grid.
All experiments in this investigation have been performed on a standard workstation and the computing
time is of the order of minutes.

DISCUSSION

The goal of this work has been to develop a solution algorithm for the Navier- -Stokes equations which
is robust, fast and sparse. The robustness is attached to the implicit solution techniques for the
differential equation system. The speed of the algorithm is tied to the computer time needed. The
sparsity is linked to the storage requirements of the algorithm. The adaptive method described in this
paper seems to some extent to have these properties.

In the present paper an adaptive method for solving the Navier-Stokes equations is developed. The
adaptive algorithm may be considered as consisting of the following five essential parts: grid generation,
adaptive refinement, matrix integration, intergrid transition and adaptive equation solver.

The grid generation is based on the tri-tree algorithm, which permits the construction of a finite
element grid at each tree level. The tri-tree algorithm allows for adapting the grid both to irregular
geometry and to the solution of the system of differential equations. The matrix generation is executed
by analytic integration and is therefore fast enough for the coefficients in the equation matrix to be easily
generated whenever needed in the solution algorithm. The transition from coarse to fine grids is direct
and linear interpolation is used for the midside nodes. The iterative solver, Bi- CGSTAB, allows for zero
diagonal blocks in the equation matrix.

The most important property of the adaptive algorithm is that when the grid is sufficiently refined, the
start vector is within the solution tolerance and only a few iterations are needed. For more complex

TRI-TREE ITERATIVE SOLVER FOR STOKES EQUATIONS 913

boundaq conditions and geometries when local spatial refinement is needed, this property can be used
to obtain an accurate solution where large gradients in the solution occur.

Further work with adaptive tri-tree grid structures for irregular grids will consider non-linear adaptive
iterative solvers, linear and non-linear multigrid methods, local grid adaptation to discontinuities in both
the solution and the boundary geometry and hyperbolic upwinding schemes.

ACKNOWLEDGEMENTS

The author is grateful to Britt von Krogh for corrections of the manuscript and to Olav Dahl for
discussions of numerical methods.

REFERENCES

1. T. J. R. Hughes, L. €? Fmca and G . M. Hulbert, ‘A new finite element formulation for computational fluid dynamics. VIII.
The Galerkin/Ieast-squares method for advectivdifFwive equations’, Compur. M e t M Appl. Mech. Eng., 73, 173-189
(I 989).

2. T. Utnes, ‘Finite element modeling of quasi-three dimensional nearly horizontal flow’, Inr. j. numer merhodsfiidr, 12,559-
576 (1991).

3. S. 0. Wille, ‘Num&cal simulations of steady flow inside a three dimensional aortic bifurcation model’, 1 Biomed. Eng., 6 ,

4. E. Banagy and G. F. Carey, ‘A partitioning scheme and iterative solution for sparse b o d e d systems’, Comput. Methodr

5 . 0. Dahl and S. 0. Wille, ‘An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite element

6. S. 0. Wille, ‘Pulsatile pressure and Row in arterial aneurysm simulated in a mathematical model’, J! Biomed. Eng., 3, 153-

7. A. George and J. W. Liu, Computer Solutions ofhrge Sparse Positive Definite Systems, Prentice-Hall, Eng lewd Cliffs, NJ,

8. S. 0. Wille, ‘A preconditioned alternating inner-outer iterative solution method for the mixed finite element formulation of the

9. P. K. W. Vinsome, ‘orthomin, an iterative method for solving sparse sets of simultaneous linear equations’, h. Fourrh

10. D. M. Young and K. C. Y q ‘Generalized conjugate-went acceleration of non-symmetrizable iterative methods‘, Lin. Alg.

11. €? Sonneveld, ‘CGS, a fast Lanczos-type solver for non-symmehic liear systems’, SUM 1 Sci. Star. Cornput., 10,36-52

12. H. A. van der Vorst, ‘BiCGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear

13. G. F. Carey, K. C. Wang and W. D. Joubert, ‘Performance of iterative methods for Newtonian and generalized Newtonian

14. C. Vincent and R. Boyer, ‘A preconditioned conjugate w e n t Uzawa- type method for the solution of the Stokes problem by

15. 0. G. Johnson, C. A. Michelli and G. Paul, ‘Polynomial preconditionen for conjugate w e n t calculations’, SIAMJ Numer:

16. S . 0. Wille, ‘A structured tri-tree search method for generation of optimal unstructured finite element grids in two and three

17. J. Peraire, M. Vadati, K. Morgan and 0. Zienkiewicz, ‘Adaptive meshing for compressible flow computations’, 1 Comput.

18. R. Lohner, K. Morgan and 0. C. Zienkiewicz, ‘An adaptive finite element procedure for compressible high speed flows’,

19. W. J. Schroeder and M. S. Shepard, ‘A combined octree/Delauney method for I l l y automatic 3-D mesh generation’, Inr. j.

20. H. K. Ruud and S. 0. Wille, ‘An advancing front algorithm for three dimensional mesh generation’, h. MlMETA 90,

21. C. Taylor and €? Hood, ‘A numerical solution of the Navier-Stokes equations using the finite element technique’, Comput.

22. W. Hackbush, Multi-Grid Methods and Applicatiom, Springer, Berlin, 1985.

49-55 (1984).

Appl. Mech. Eng., 70, 321-327 (1988).

formulation of the 2-D and 3-D Navier-Stokes equations’, Int. j . nume,: melhodsfiids, 15,525-544 (1992).

158 (1981).

1981.

Navier-Stokes equations’, Inr. j. numer methodsfiids, 18, 1135-1151 (1994).

Synp. on Reservoir Simulation, Society of Petroleum Engineers of AIME, New Yodc, 1976, pp. 147-159.

Appl., 34, 159-194 (1980).

(1987).

systems’, SIAMJ Sci. Stat. Comput., in press.

flows’, Int. j . numer me thdf lu ids , 9, 127-150 (1989).

mixed Ql-W stabilized finite elements’, Inr. j . nume,: m e t h d f i i d s , 14.289-298 (1992).

 AM^., 20,362-376 (1983).

dimensions’, Int. j. numer methodrjluids, 14, 861-881 (1992).

Phys., 71,44%466 (1987).

Comput. Methods Appl. Mech. Eng., 51,441464 (1985).

numer methods eng., 29,37-55 (1990).

Numerical Methods in Engineering: meo ty and Applicatiom, January 1990.

Fluids, 1,73-100 (1973).

